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This longitudinal study aimed to determine changes in students’ predictive reasoning across 

one year. Forty-four Australian students predicted future temperatures from a table of 

maximum monthly temperatures, explained their predictive strategies, and represented the 

data at two time points: Grade 3 and 4. Responses were analysed using a hierarchical 

framework of structural statistical features. Students were more likely in Grade 4 than Grade 

3 to make reasonable predictions (87% vs 54%), to demonstrate data transnumeration in their 

representations (71% vs 19%), and to describe data prediction strategies based on extraction, 

clustering, aggregation of data, and observations of measures of central tendency. 

Predictive reasoning is an everyday process where the decision-making process is 

informed by chance events placed in a context of underlying causal variation (Makar & 

Rubin, 2018). Research with primary school students on probability and prediction often 

focuses upon deterministic experiments using devices such as random draws; for example, 

balls or lollies (Reading & Shaughnessy, 2004). These tasks are helpful for investigating and 

promoting student reasoning because they reduce the number of sources of variation under 

consideration. However, at the heart of statistical analysis lies an understanding of the 

relationship between variables (Biehler et al., 2018). To answer many “real world” statistical 

questions of interest, students must also be capable of making distinctions between authentic 

correlations and genuine randomness (Bryant & Nunes, 2012). Designing predictive tasks, 

which include both causal and random variation, can therefore have exceptional potential 

for exploring some of the big ideas about probability and variation, such as distribution, 

expectation and randomness, and inference and sampling.  

Appreciating distributional relationships and identifying authentic data patterns while 

predicting can be challenging for young students. Watson and Moritz (2001) described 

predictive strategies used by young students which included seeking missing or unused 

numbers, as also reported in Oslington et al., (2020). This may be linked to students’ 

perception of “fairness” whereby variation is controlled by even allocation across groups 

(Reading & Shaughnessy, 2004). When describing the data predictions of Grade 2 students, 

for example, Ben-Zvi and Sharett-Amir (2005) noted that students in their sample appeared 

to conceive the data as flat distribution with all values equally likely. However, Grade 3 

students with an aggregate view of data were generally able to make reasonable predictions 

(Oslington et al., 2020) suggesting a developmental progression towards an understanding 

of data as a distribution containing a central signal with random variability around the signal 

(Konold & Pollatsek, 2002). 

Conceptual framework 

Students’ development of predictive reasoning competencies can be supported in 

multiple ways, including via opportunities to create and analyse data (English, 2012; Makar, 
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2016), opportunities to represent data by drawing, describing and graphing (English, 2012; 

Mulligan, 2015), and via other low-stakes learning experiences in which predictive 

reasoning language, context, and content is scaffolded (Kazak et al., 2015; Makar, 2016). To 

measure these competencies, researchers have drawn upon frameworks that observe what 

students can do—such as the Awareness of Mathematical Pattern and Structure (AMPS) 

(Mulligan & Mitchelmore, 2009) or the Structure of Observed Learning Outcomes (SOLO) 

model (Watson et al., 2017)—as well as what students notice and describe (English, 2012; 

Konold et al., 2015; Mulligan, 2015).  

Mulligan and Mitchelmore’s (2009) five-level AMPS conceptual model demonstrated 

that some young students spontaneously sought patterns, structures, and relationships by 

noticing similarities and differences between mathematical quantities, objects or 

relationships. In this process, students showed an understanding of emerging generality 

when they identified and applied common structural features and noticed regularities of 

spatial structures. These students could also think relationally. Based on these findings, 

AMPS describes two interdependent components: one cognitive—a knowledge of structure, 

and one meta-cognitive—a tendency to seek and analyse patterns. When applied to the 

development of statistical reasoning, it is implied that pattern and structure refer to the 

general properties within the data set, which can be expressed through relationships between 

the elements or subsets of the data set (Mason et al., 2009).  

Our recent study (Oslington et al., 2020) found individual differences in reasoning 

among Grade 3 students. For example, students who viewed the data represented in a table 

as a single dataset also tended to use that same table as a resource for making predictions; 

integrating data with personal experiences and general knowledge. However, other third 

graders used the table in an inconsistent and idiosyncratic way. The current study, which 

included the same cohort at the beginning of Grade 4, focused on the changes in structural 

features of student predictions, reasoning, and representations between Grades 3 and 4. The 

AMPS framework was extended to capture the structural features of statistical development, 

drawing on research which suggests that the development of complex cognitive processes 

underpinning predictive reasoning occurs over time and from an early age. These studies 

imply that students who engage in pattern-seeking behaviours such as seeking similarities 

and differences are likely to understand the mathematical and statistical structures behind 

these patterns, while those who do not notice the patterns are likely to focus upon 

idiosyncratic or non-mathematical features. Thus, the developmental process of predictive 

reasoning might be interpreted through observing the pattern-seeking behaviour of students 

while engaged in a predictive reasoning task.  

The Design Study 

An earlier report (Oslington et al., 2020) described the first of three iterations of a design 

study on predictive reasoning conducted with a single student cohort (Oslington, 2020). This 

report describes the second of the three iterations and two research questions were addressed: 

(1) Which structural features of the data were identified by students when predicting 

from, reasoning about, and representing a data table? 

(2) How do the predictions, reasoning, and representations of Grade 3 students compare 

with those same students when in Grade 4? 
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Participants 

Students attended a K-12 independent school in metropolitan Sydney. The school was 

relatively advantaged with an ICSEA score of 1080 and 75% of students were in the top half 

of Australian students. The report here covers two data points: the first week of Term 1 for 

Grade 3 students and the first week of Grade 4 with the same students. Forty-four students 

were available at both time data points representing 96% of the year group. Ethical 

permission was provided for all students. Data collection on both occasions was by the first 

author as teacher-researcher. 

Table 1 

Coding for student predictions, reasoning and representations (AMPS level) 

AMPS 

level 

No. of 

reasonablea 

predictions 

Explanations Representations 

Advanced 

structural 

12  

 

Identified and 

described 

relationships 

between variables 

across the table 

Relevant data transnumeration 

demonstrating association between 

variables of time and temperature (e.g., 

dot and line graphs) 

Structural 10-11  Patterns observed 

across the row 

and column 

structure 

Relevant data transnumeration through 

reorganisation of variables of time and 

temperature (e.g., bar graphs, tables 

extracting highest values from years or 

months) 

Partial  5-9  Patterns observed 

using column 

structure 

Attempted transnumeration, such as 

changing the orientation of the table 

without relevant data extraction (e.g., 

reorienting the data table so time series 

is on the horizontal axis) 

Emergent 3-4 Patterns described 

not related to data 

context or content 

Reproduction of data set without 

transnumeration (i.e., copy of table) 

Pre-

structural 

≥ 2  Systematic 

pattern seeking 

not employed 

No interaction with the numbers in the 

data table observed (e.g., weather 

pictures, empty grids or invented data) 

a Predictions were considered reasonable if falling within the 5th and 95th percentiles of temperatures 

historically recorded for the month at Observatory Hill meteorological station, Sydney. 

Lesson design and data collection 

As previously described (Oslington et al., 2020), students were withdrawn from the 

classroom in convenience groups of 9–12 students. Each student independently: (1) 

predicted future maximum monthly temperatures for Sydney using a table of past maximum 

temperatures, (2) constructed a representation of the temperature data, and (3) explained 

their predictive strategies via a videoed interview. The data collection process was identical 

in both Grades 3 and 4, with the exception that the temperature table provided to Grade 4 

students (Figure 1) contained one extra year (2017) of temperatures. Data consisting of 



Oslington, Mulligan and Van Bergen 

308 

student predictions, video interviews, and representations for students at each time point 

were coded using a five level AMPS scaffold (Table 1). 

 

Figure 1. Maximum temperatures table for Sydney provided to Grade 4 students. 

Results 

As shown in Table 2, evidence of structural and advanced structural awareness 

underpinning temperature predictions was more widespread in the Grade 4 cohort relative 

to Grade 3. In Grade 4, 87% (n=38) of students predicted sequences of temperatures with at 

least 10 reasonable predictions. In contrast, just 54% (n=24) of the students had reached this 

same milestone in Grade 3. Almost half the Grade 4 cohort (48%) made reasonable 

predictions for all 12 monthly values, compared with 27% of Grade 3 students. The 

percentage of students making emergent or pre-structural predictions declined from 22% of 

Grade 3 students to only 9% of Grade 4 students.  

Table 2 

AMPS levels of student predictions, representations and explanations in Grades 3 and 4  

  

Reasonable predictions relied on identification of patterns in the data, which some 

students could articulate at interview. Strategies unrelated to the data table (pre-structural), 

or that erroneously applied personal knowledge and experience in isolation from the data 

(emergent), were reported by 48% (n=21) of students in Grade 3 but just 20% (n=9) of the 

same students in Grade 4. By Grade 4,79 % (n=21) of the cohort described some relevant 

aspects of the data table when explaining their predictive strategies (i.e., a partial, structural, 

or advanced structural response) relative to 22 (50%) in Grade 3. Students’ strategies that 

 Predictions (%) Explanations (%) Representations (%) 

 Grade 3 Grade 4 Grade 3 Grade 4 Grade 3 Grade 4 

Adv structural 27 48  2  7  5 12 

Structural 27 39 15 36  7 45 

Partial  23  5 34 36  7 14 

Emergent 11  7 25 14 36 20 

Pre-structural  11  2 23  7 45  9 
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focused upon a single aspect of the data were categorised as partial. These explanations often 

reflected awareness of the similarities or patterns in the vertical column structure of the table 

only, but were not coordinated with the seasonality implicit in the horizontal row structure. 

Other strategies included matching the tens’ digits or looking at the highest or lowest value 

in each column. Approximately one third of each of the Grade 3 and 4 cohorts’ (34% and 

36% respectively) elicited explanations that were coded at the partial level. Structural 

responses successfully integrated seasonal knowledge and changes in temperature with the 

yearly trends of the data table by coordination of vertical and horizontal data entries. Such 

responses were more common in Grade 4 (36%) than Grade 3 (15%). Grade 4 student Luca, 

for example, first described observing the range of values in columns, and noticed that some 

values were more frequent than others, implying an expectation of a clumped distribution. 

He then explained that the previous two July temperatures were the hottest July values, 

predicting a similarly hot value for 2018. 

Finally, and in contrast to the temperature prediction data, verbal explanations at the 

advanced structural level were quite uncommon, observed in only one Grade 3 student (2%) 

and three Grade 4 students (7%). These students described the data table holistically, often 

observing multiple interrelated components (e.g., noticing a higher level of variability with 

increasing temperatures). They differed from those with structural explanations by 

describing how they had sought central tendencies in the data, or by selecting an average or 

representative figure. In Grade 3, for example, Joseph observed differences in monthly data 

range and benchmarked values by intentionally making adjacent months a few degrees 

higher or lower than adjacent ones. Grade 4 student, Rhys, explained he sought the 

“approximate average temperatures”, describing these as middle values, closely aligned to 

the median. Grade 4 student, Stuart, started his predicting with winter temperatures where 

the variability was least, and explicitly linked the higher range of temperatures in the summer 

months to the amplified impact of climate change on warmer seasons relative to cooler ones.  

Students’ representations of predictions in Grade 3 were predominately pre-structural, 

or emergent (Table 2). Pre-structural representations did not include data from the original 

temperature table, instead consisting of weather pictures, empty grids, and tables with 

invented data (pre-structural, Figure 2). Students with emergent responses appeared to 

recognise the importance of the original temperature data by copying the table, but provided 

no interpretation or additional manipulation to illustrate understanding (emergent, Figure 2). 

In both Grade 3 (7%) and Grade 4 (14%), a relatively small number of students also 

constructed representations at the partial structural level, using aspects of the table data in a 

non-systematic way. For example, the transnumeration labelled partial in Figure 2 was 

constructed as a time sequence on the x-axis prior to stacking the temperature data values on 

the y-axis above. 

Finally, by Grade 4 more than half of the students created representations that were 

categorised at the structural (45%) or advanced structural levels (12%). These students were 

able to organise their data in a new way, distinct from the original data table: either by sorting 

(e.g., listing years as hottest to coldest), grouping the original data to create a new variable 

(e.g., determining hottest temperature for each month), or by focusing on a specific statistical 

exemplar, such as the median value. While some students listed these as abridged tables or 

lists, students in Grade 4 (39%) were often able to coordinate two sets of variables and create 

bar graphs (23%) or line graphs and scatterplots (16%). Only 7% of students in Grade 3 were 

able to do the same. The examples of structural and advanced structural representations in 

Figure 2 include structural elements such as approximate equal spacing, the range on the y-

axis starting above zero, correct sequencing of months, and coordination of bivariate data. 
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Discussion 

The aim of the study was to track the development of students’ predictive reasoning 

capacities across one year. Students demonstrated important gains in development by Grade 

4, evident through the reasonableness of their predictions, and examples of transnumeration 

and coordinate graphing in their representations. In order to accurately make predictions, 

students required an understanding of the variability in data, the capacity to reason logically 

about random events, and to appreciate associations between events (Bryant & Nunes, 2012). 

Consistent with Watson and Moritz (2001), who found increases over time in students’ 

ability to represent, predict, and interpret pictograms, students’ predictions in the current 

study progressed markedly between grade levels. By Grade 4, many students’ explanations 

of their predictions reflected an understanding of multiple forms of variability (see 

Shaughnessy, 2007), for example, noticing extremes and outliers in temperatures, discussing 

changes over time, noticing variability in the table or monthly range; variability associated 

with seasonality, and awareness of distributions. 

 

Figure 2. Student representations of Sydney maximum temperatures at five AMPS levels.  

Coding with the AMPS conceptual framework highlighted the degree to which students 

identified statistically-meaningful patterns within the data. While previous research has 

shown that students with a high awareness of patterns are also likely to develop coherent 

mathematical concepts and relationships (Mulligan et al., 2020) and representations 

(Mulligan, 2015; Oslington et al., 2020), this longitudinal study is the first to apply the 

AMPS framework to statistical reasoning (also see Cycle 1 findings in Oslington et al., 

2020). Awareness of mathematical pattern and structure was fundamental to students’ 

perception and representation of the data set, enabling an understanding of how the variables 

of time and temperature could be related and organised, how students coordinated bivariate 

lent data, and an understanding of collinearity. For example, students in the cohort were 



Oslington, Mulligan and Van Bergen 

311 

frequently able to identify the base-ten structure evident in the monthly columns, note the 

repeated data values, and identify variations and similarities in data range. Students who had 

structural or advanced structural AMPS levels demonstrated conceptual understanding of 

central tendency, variability and could abstract and generalise about relationships within the 

data, which are both crucial components of AMPS (Mulligan & Mitchelmore, 2009). 

The data set chosen in this study reflected underlying causal variation due to seasonal 

change, which was apparent to students’ reasoning at the structural and advanced structural 

levels. In each case, students were able to identify this causal pattern and use it in their own 

predictions and representations. However, the variables of time and temperature could also 

be organized in several ways, each giving a different grasp of the distribution (Gattuso & 

Ottaviani, 2011). If a student selected the temperature as the dependent variable, for 

example, the independent variable could be either month or year. Selection of month as the 

independent variable emphasised the relationship between months and temperatures, 

provided they were organised in calendar order. This made it easier for students to read 

beyond the data (Makar & Rubin, 2018) and make inferences about other years. For some 

students, drawing their own (structural) predictions in a figure or graph clarified this 

relationship in a way that simply viewing the historical data table could not. This became 

apparent at interview. Students who selected the year as the independent variable still 

demonstrated coordination of bivariate data, but their resulting graph lacked the relational 

component apparent when months were selected. This is because, at least on the timescale 

used, the data showed no clear trend across years and temperatures. This type of 

representation provided less opportunity for inference, as interpretation was limited to 

noticing (for example) the hottest or coldest year out of the limited range.  

Limitations and directions for further study 

This study illustrated development in the predictions, explanations, and representations 

of students at Grade 3 and 4. The study was nonetheless limited by focusing on a single 

aspect of predictive reasoning with one cohort. It also involved a repeated task and the impact 

of task familiarity upon the achievement of the students has not been explored. Caution is 

therefore required before such findings are generalised to other contexts. Notwithstanding 

these limitations, there are also recommendations for future research. 

First, future research should investigate the interplay of students’ prior knowledge, 

autobiographical memory, and data interpretation skills when making predictions. In the 

current study, students’ explanations revealed gaps in their assumed semantic knowledge of 

relevant concepts such as the timing of winter, the importance of the values in a data table, 

and the repeated pattern of months. This was particularly true in Grade 3. For example, few 

students appreciated that the two dimensions of the data table actually represented one 

continuous data sequence, which formed a pattern of highs and lows repeated every 12 units. 

In contrast, references to students’ prior experiences were common. The Grade 4 data 

collection occurred in February 2019, after an Australian summer widely promoted as having 

record-setting maximum temperatures. While predictive strategies described by the Grade 4 

students were typically based upon either the data values, the seasons, or an integration of 

both season and data table contents, the discussion of temperature within the media and 

community may still have helped students to better understand what might count as a realistic 

temperature. Indeed, practice at making predictions in other contexts—such as literacy 

studies, problem-solving in mathematics, social science lessons on climate change and 

geography—may also have contributed to the growth in predictive reasoning capacity 

between the two grades. 
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Secondly, for more advanced and older students, further research should consider the 

optimal timing for introduction of formal statistical concepts. Several of the students already 

appear to be independently seeking central tendencies in the data. Research on the use of 

exploratory graphing as a tool for promoting a relational understanding of data sets would 

also provide guidance regarding appropriate statistical learning sequences. 
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